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On the Hausdorff Dimension of Fractal Attractors 
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We consider such mappings xn+ 1 = F(x,,) of an interval into itself for which the 
attractor is a Cantor set. For the same class of mappings for which the 
Feigenbaum scaling laws hold, we show that the Hausdorff dimension of the 
attractor is universally equal to D = 0.538 . . . .  
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1. INTRODUCTION 

One of the basic properties of a strange attractor (1) is its Hausdorff 
dimension. For any bounded set of points in R n, it is defined (2) via the 
number N of small n-balls of size l needed to cover the set. If this number 
increases for l---> 0 like 

N ( l ) ~ c o n s t .  l - ~  (1) 

then D is called the Hausdorff dimension of the set. (More general cases 
are discussed in Ref. 2, but will not be needed here). 

A strange attractor being topologically the product of a Cantor set 
with some R p, its Hausdorff dimension is in general noninteger. In Refs. 3 
and 4, it has been estimated for several models existing in the literature. 

In the present paper, we shall calculate the dimension of what can be 
considered the simplest strange attractor, namely the attractor in those 
nonlinear but smooth mappings 

x.+, = F(x . )  (2) 

for which it is a Cantor set. These mappings have remarkable universal 
scaling properties which were discussed extensively by Feigenbaum (5'6) (see 
also Refs. 7-12). These properties are very reminiscent of critical phenom- 
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ena. Since fractal dimensions are closely related to anomalous dimen- 
sions (2'13), our findings add to this analogy. Consequently, we shall follow 
Collet and Tresser (1~ and call such mappings "critical". 

To be specific, consider a mapping of [ -  b, b] into itself with 

F(x) --- b . f ( x ) ,  b > O, (3) 

and f satisfying the conditions 
- - f ( 0 )  = 1 
- - f ( x )  has a unique maximum at x = 0 
- - f  is differentiable with f '  > 0 for x < 0 and f '  < 0 for x > 0. 
- - f "  exists around x = 0, and f ' ( 0 )  v a 0. 
A typical example of such a function is shown in Fig. 1. 

For small values of b, this mapping has one stable fixed point. When 
increasing b beyond some value bl, this becomes unstable and a stable 
cycle of period 2 appears. This becomes again unstable at b = b 2, giving 
way to a period-4 attractor which for b > b 3 bifurcates into a period-8 
attractor, etc. At the accumulation point bcr of these bifurcation points b;, 
the attractor becomes nonperiodic. For the logistic equation 2 f ( x )=  1 - 
2x 2, e.g., this happens for (5) bcr = 0.8370051 . . . .  At still larger values of b, 
one finds again periodic attractors (of period > 2) which bifurcate in a 
similar way. Again for f(x) = 1 - 2x 2, one finds, e.g., the accumulation 
point of the cycles with period 3 • 2 k at (5) bcr = 0.9433499 . . . .  

The interest in these "critical" mappings results from the universal 
properties found by Feigenbaum. He showed the following: 

(i) The distance between successive bifurcation points scale like 

bk + l - bk k,~oo~ - k  (4) 

with 8 = 4 .66920 . . .  for all mappings satisfying the above conditions. 
These conditions are, however, much too stringent as this scaling law has 
been observed in many other systems as well. (s'9) 

(ii) For b = bet and for x ~, 0, the iterations 

F(")(x) = F ( F ( . . .  F ( x ) . . .  )) 

n times (5) 

are self-similar for n ~ oe : 

F(Z'O(x)~-(1/a)F(n)(ax)  (for x ~ 0, n ~ )  (6) 

with a = 2 .50290 . . .  being again a universal constant. The function 

g(x) = lim ( -  a)"F(Z~ ") (7) 

2 The standard logistic equation is related to this by trivial manipulations. 
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Fig. 1. The universal scaling curve g(x) (calculated from the parametrization given in Ref. 
6). The points on the x axis represent the attractor, with xk+ ~ = g(xk). 

thus satisfies the exact scaling relation 

g( g(x)) = - (1/a) g(ax) (8) 

Rescaling it according to 

g ( x ) ~  l / g ( 0 )  ] g(g(O)x) (9) 

we check easily that the rescaled function satisfies g(0) = 1 in addition to 
Eq. (8). It is indeed universal within the above class, and is plotted in 
Fig. 1. 

In Section 2, we shall show that the known (6) properties of g(x) allow 
a straightforward estimation of the Hausdorff dimension of the attractor of 

= g ( x . )  (10) 
We shall find the exact bounds 

0.53763 < D < 0.53854 ( l l )  

Since the attractors for different mappings are only locally universal, 
one cannot conclude immediately that D is universal. 

In Section 3 we shall first present heuristic arguments that D is 
nevertheless universal. After that, we shall verify this for various critical 
mappings of the above class by brute force, by covering the attractor by 
small intervals, and fitting N(l) by Eq. (1). 
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2. THE MAPPING DEFINED BY THE SCALING FUNCTION 

Let us first construct the attractor of x~+ 1 = g(xn). Assume that 

x, = g(0) = 1 (12) 

Then clearly x 2 -- - 1/a ,  and the whole attractor lies in [x2, xl] (see Fig. 1). 
Similarly, any point x k is mapped by g~k) into 

X2k = - - ( l l a ) x  k, k = 1 , 2 , 3 , . . . .  (13) 

Thus the set (x~; k even) lies in [x2,x4] and is exactly similar to the whole 
set (Xk), but scaled down by a factor - a -1. The set (Xk; k odd) lies in the 
disjoint interval [x3, Xl]. Since g(x)  is strictly monotonic and smooth on this 
interval, and since the set of even x k is obtained from the set of odd x k by 
applying g, the distribution of points x~ in [x3, Xl] is qualitatively similar to 
the pattern on [x 2, x4] (see Fig. 1), but slightly distorted. 

The set (xk) separates thus into two subsets, one of which is exactly 
similar to it, and the other approximately. Repeating the same reasoning, 
we see that each subset is itself composed of two sub-subsets, each of which 
is (qualitatively) similar to the whole set and is composed of two sub-sub- 
subsets . . .  etc. 

This shows in particular that the points X2k+l approach x~ for k ~  0% 
and thus x x belongs to the attractor. The whole attractor evidently consists 
of the set (x k). 

Let us now cover the interval [ - 1 ,  1] by small intervals of length l. 
Denoting by N[2,4 ] ( l)  and Nt3,q (l) the numbers of intervals needed to cover 
the points in [x2,x4] and [x3,x d, respectively, the above considerations 
show that 

N[2,41(/) = U ( a l )  (14) 

and 

N[2,41( I g'(x ,) l l  ) < N[3,,](/) < N[2,41( I g'(x3)]l ) (15) 

In the last line we have used the fact that g"(x)  < 0 in [x3,xl]. Assuming 
Eq. (1) to hold on each subinterval (with the same D !), we find 

1 + 1 < l < - - 1  + 1 (16) 
. '0  ( . Ig ' ( x , ) l )  ~ a D (at g ' (x3)l)  

Calculating the x k and g'(Xk) from the parametrization given in Ref. 6, we 
obtain thus 

0.5245 < D < 0.5544 (17) 

Successively more tight bounds are obtained by dividing the interval 
[x3, x~] into 2 k subintervals, and using the approximate similarity of each of 
them to a subinterval of [x 2, x4]. The next more stringent bound is, e.g., 
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obtained by writing 

N ( I )  = N[2,4](l ) + N[3,71(/) + U[5,11(/) 

with 

(18) 

N(a:l g'(x7)l/) < N[3,7](l) < W(a21 g'(x3)l/) (19) 
Nt3,11(alg'(x,)[l ) < N[5,1](/) < N[3 , , l (a lg ' ( x s ) l l  ) (20) 

and assuming again Eq. (1) for all subintervals. 
The resulting bounds are 0.53313 < D < 0.54374. Dividing [x3, xl] into 

four pieces, we obtain 0.53646 < D < 0.53964, while dividing it into eight 
subsets, we get finally Eq. (11). 

3. U N I V E R S A L I T Y  

As noted by Feigenbaum, (5'6) the attractor cannot be globally uni- 
versal, although it is so locally around x = 0. Although the Hausdorff  
dimension is in some sense a global property, we propose that it is 
nevertheless universal. 

Consider some small neighborhood I of x = 0, and an arbitrary point 
x ~ I of the attractor. After some finite number  k of mappings, x will be 
mapped  onto a point in I. When this happens the first time, the function 
F (k) has a nonvanishing derivative at x. The piece of the attractor near x is 
thus obtained from the universal part  around x = 0 by the monotonic 
inverse mapping [F(k)] - ~, and is thus also approximately universal except 
for an x-dependent scale factor. 

This suggests that the Hausdorff  measure of the attractor [the constant 
in front of the exponential in Eq. (1)] is not universal, while the dimension 
is universal. 

In order to check this, we studied numerically three different critical 
mappings which were also studied in Ref. 5: (1) the logistic equation 
F ( x )  = b .  (1 - 2x 2) with b = 0.8370051 . . .  (limit point of period 2 ~ cy- 
cles), (2) the same equation with b = 0 .9433499 . . .  (limit point of period 
3 �9 2 ~ cycles), and (3) F ( x )  = b �9 x(1 - x 2) with b -- 2.302283 . . . (limit of 
period 2 k cycles). Notice that the last function is not of the general type 
demanded above, but can be brought to it by trivial manipulations. 

Starting with x 1 equal to the maximum of F ( x ) ,  the attractor is in all 
three cases just the set of iterates x k. [The proof goes as in the case where 
F ( x )  = g(x).] We divided the interval [ - 1 ,  I] into equal bins of length 
I = 0.01 x 2 -n and counted the number  N of bins containing at least one 
x k, for 1 < k < kma x. We did this for n up to 14. We found that N grew 
with kma x up to kma x ~ 65,000 (for n = 14), but stayed constant beyond that 
(we checked this by iterating up to kma • = 105). Plotting l n N  against 



178 Grassberger 

N 

10 3 

102 

o J  

~ 1 7 6  

.j, '~ 
o~ 

o~~ 
~o~O~~ 

1010 2 ' , ~ 103 104 lO s 1/I 106 

Fig. 2. The number N(I) of bins of length l needed to cover the attractor of the logistic 
equation at the limit point of period 2 k cycles. By shifting the origin of the binning, N(1) 
changes by amounts which are smaller than the sizes of the dots. 

i n ( l / l ) ,  we got perfectly straight lines, at least for 1~< 0.0025 (see Fig. 2). 
The slopes of these lines are just D. There are small unsystematic deviations 
from this straight line behavior which change randomly if we shift the 
origin of the binning by random numbers. These small deviations allow us 
to estimate "statistical" errors in a phenomenological way. Possible system- 
atic errors are not taken into account in this way. They could arise if our 
bins were not yet small enough, and they are not easy to estimate reliably 
(as in all numerical simulations of critical phenomena!). But they seem to 
be negligible if we use for a fit only binnings with l ~< 3 • 10 -4, as 
indicated by the linearity of the plots down to much larger l's. 

We found in this way 

0.5381 + 0.0006 

D = 0.5388 + 0.002 

0.5388 _ 0.002 

for case (1) 

for case (2) 

for case (3) 

(21) 

in agreement with the universality hypothesis. As anticipated, the Haus- 
dorff m e a s u r e s  were observed to be nonuniversal. 

4. COMMENTS 

Let us add some remarks about the estimates of D presented in Refs. 3 
and 4. There it was shown that D is related to the Lyapunov characteristic 
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exponents, for a large number of strange attractors. In our cases, there is 
but one characteristic exponent which is easily seen to vanish for critical 
mappings. Applying naively the formula given by Mori, (3) we would 
predict absurdly D = 1. 

One reason for this failure might be the observation of Yorke (cited in 
Ref. 4) that this connection between D and characteristic exponents need 
not to hold for x-dependent Jacobians IlOF~(x)/~xkll. 

Anyhow, characteristic exponents are not useful to describe the asymp- 
totic behavior of dlF(n~l/dx for critical mappings, being too crude a 
measure for the sensitivity to initial conditions. For critical mappings, 
dlF (~ [/dx behaves extremely nonuniformly both with respect to n and to 
x. In a suitably averaged sense, however, one finds it to increase like some 
universal power of n, as the analogy with critical phenomena would have 
suggested. Details will be given elsewhere. (14) 
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